Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice.

نویسندگان

  • Naoki Yamaji
  • Gen Sakurai
  • Namiki Mitani-Ueno
  • Jian Feng Ma
چکیده

Requirement of mineral elements in different plant tissues is not often consistent with their transpiration rate; therefore, plants have developed systems for preferential distribution of mineral elements to the developing tissues with low transpiration. Here we took silicon (Si) as an example and revealed an efficient system for preferential distribution of Si in the node of rice (Oryza sativa). Rice is able to accumulate more than 10% Si of the dry weight in the husk, which is required for protecting the grains from water loss and pathogen infection. However, it has been unknown for a long time how this hyperaccumulation is achieved. We found that three transporters (Lsi2, Lsi3, and Lsi6) located at the node are involved in the intervascular transfer, which is required for the preferential distribution of Si. Lsi2 was polarly localized to the bundle sheath cell layer around the enlarged vascular bundles, which is next to the xylem transfer cell layer where Lsi6 is localized. Lsi3 was located in the parenchyma tissues between enlarged vascular bundles and diffuse vascular bundles. Similar to Lsi6, knockout of Lsi2 and Lsi3 also resulted in decreased distribution of Si to the panicles but increased Si to the flag leaf. Furthermore, we constructed a mathematical model for Si distribution and revealed that in addition to cooperation of three transporters, an apoplastic barrier localized at the bundle sheath cells and development of the enlarged vascular bundles in node are also required for the hyperaccumulation of Si in rice husk.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A transporter at the node responsible for intervascular transfer of silicon in rice.

The concentration of essential mineral nutrients in the edible portion of plants such as grains may affect the nutritional value of these foods, while concentrations of toxic minerals in the plant are matter of food safety. Minerals taken up by the roots from soils are normally redirected at plant nodes before they are finally transported into developing seeds. However, the molecular mechanisms...

متن کامل

A Transporter at the Node Responsible for Intervascular Transfer of Silicon in Rice W

The concentration of essential mineral nutrients in the edible portion of plants such as grains may affect the nutritional value of these foods, while concentrations of toxic minerals in the plant are matter of food safety. Minerals taken up by the roots from soils are normally redirected at plant nodes before they are finally transported into developing seeds. However, the molecular mechanisms...

متن کامل

Functional characterization of a silicon transporter gene implicated in silicon distribution in barley.

Silicon (Si) is a beneficial element for plant growth. In barley (Hordeum vulgare), Si uptake by the roots is mainly mediated by a Si channel, Low Silicon1 (HvLsi1), and an efflux transporter, HvLsi2. However, transporters involved in the distribution of Si in the shoots have not been identified. Here, we report the functional characterization of a homolog of HvLsi1, HvLsi6. HvLsi6 showed perme...

متن کامل

تاثیر منابع و مقادیر مختلف کود سیلیس بر رشد، عملکرد و میزان آلودگی به کرم ساقه خوار در رقم طارم‌هاشمی و لاین 843 در گیاه برنج

Silicon is as an essential element for crops and an important food source for the growth of rice plant. If no adequate replacement for this element, plants are faced with a shortage of silicon causing serious eating disorder and instability in plant resistance to pests. This research was done to investigate the effect of silicon on growth, yield and tolerance to rice stem borer in Tarom Hashemi...

متن کامل

Synthesis of Three - Dimensional Mesoporous Silicon from Rice Husk via SHS Route

Silicon nanoparticles are the focus of attention thanks to their potentialities in advanced applications such as new batteries, photovoltaic cells and so on. The need to porous silicon is thus rising and will follow the same trend. In this work, highly porous nanostructured silicon is synthesized via Self-propagating high-temperature synthesis (SHS) route. Microstructural and phase analyses sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 36  شماره 

صفحات  -

تاریخ انتشار 2015